Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19193, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357509

RESUMO

Dickeya fangzhongdai, a bacterial pathogen of taro (Colocasia esculenta), onion (Allium sp.), and several species in the orchid family (Orchidaceae) causes soft rot and bleeding canker diseases. No field-deployable diagnostic tool is available for specific detection of this pathogen in different plant tissues. Therefore, we developed a field-deployable loop-mediated isothermal amplification (LAMP) assay using a unique genomic region, present exclusively in D. fangzhongdai. Multiple genomes of D. fangzhongdai, and other species of Dickeya, Pectobacterium and unrelated genera were used for comparative genomic analyses to identify an exclusive and conserved target sequence from the major facilitator superfamily (MFS) transporter gene region. This gene region had broad detection capability for D. fangzhongdai and thus was used to design primers for endpoint PCR and LAMP assays. In-silico validation showed high specificity with D. fangzhongdai genome sequences available in the NCBI GenBank genome database as well as the in-house sequenced genome. The specificity of the LAMP assay was determined with 96 strains that included all Dickeya species and Pectobacterium species as well as other closely related genera and 5 hosts; no false positives or false negatives were detected. The detection limit of the assay was determined by performing four sensitivity assays with tenfold serially diluted purified genomic DNA of D. fangzhongdai with and without the presence of crude host extract (taro, orchid, and onion). The detection limit for all sensitivity assays was 100 fg (18-20 genome copies) with no negative interference by host crude extracts. The assays were performed by five independent operators (blind test) and on three instruments (Rotor-Gene, thermocycler and dry bath); the assay results were concordant. The assay consistently detected the target pathogen from artificially inoculated and naturally infected host samples. The developed assay is highly specific for D. fangzhongdai and has applications in routine diagnostics, phytosanitary and seed certification programs, and epidemiological studies.


Assuntos
Orchidaceae , Pectobacterium , Dickeya , Técnicas de Amplificação de Ácido Nucleico/métodos , Genômica , Enterobacteriaceae/genética , Pectobacterium/genética , Orchidaceae/genética , Sensibilidade e Especificidade
2.
Sci Rep ; 11(1): 21948, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753982

RESUMO

Pectobacterium parmentieri (formerly Pectobacterium wasabiae), which causes soft rot disease in potatoes, is a newly established species of pectinolytic bacteria within the family Pectobacteriaceae. Despite serious damage caused to the potato industry worldwide, no field-deployable diagnostic tests are available to detect the pathogen in plant samples. In this study, we aimed to develop a reliable, rapid, field-deployable loop-mediated isothermal amplification (LAMP) assay for the specific detection of P. parmentieri. Specific LAMP primers targeting the petF1 gene region, found in P. parmentieri but no other Pectobacterium spp., were designed and validated in silico and in vitro using extensive inclusivity (15 strains of P. parmentieri) and exclusivity (94 strains including all other species in the genus Pectobacterium and host DNA) panels. No false positives or negatives were detected when the assay was tested directly with bacterial colonies, and with infected plant and soil samples. Sensitivity (analytical) assays using serially diluted bacterial cell lysate and purified genomic DNA established the detection limit at 10 CFU/mL and 100 fg (18-20 genome copies), respectively, even in the presence of host crude DNA. Consistent results obtained by multiple users/operators and field tests suggest the assay's applicability to routine diagnostics, seed certification programs, biosecurity, and epidemiological studies.


Assuntos
Genoma Bacteriano , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pectobacterium/isolamento & purificação , Microbiologia do Solo , Solanum tuberosum/microbiologia , Simulação por Computador , DNA Bacteriano/genética , Limite de Detecção , Pectobacterium/genética , Reprodutibilidade dos Testes
3.
Plant Direct ; 4(8): e00252, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32904806

RESUMO

Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020-2030 frames our ability to perform vital and far-reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1-4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant-based medicines, and "green infrastructure." Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a "parts store" that supports tinkering and supports query, prediction, and rapid-response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non-invasive imaging, sensors, and plug-and-play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence-assisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people's natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems.

4.
Trop Med Infect Dis ; 5(2)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503239

RESUMO

Changes in the Earth's climate and weather continue to impact the planet's ecosystems, including the interface of infectious disease agents with their hosts and vectors. Environmental disasters, natural and human-made activities raise risk factors that indirectly facilitate infectious disease outbreaks. Subsequently, changes in habitat, displaced populations, and environmental stresses that affect the survival of species are amplified over time. The recurrence and spread of vector-borne (e.g., mosquito, tick, aphid) human, animal, and plant pathogens to new geographic locations are also influenced by climate change. The distribution and range of humans, agricultural animals and plants, wildlife and native plants, as well as vectors, parasites, and microbes that cause neglected diseases of the tropics as well as other global regions are also impacted. In addition, genomic sequencing can now be applied to detect signatures of infectious pathogens as they move into new regions. Molecular detection assays complement metagenomic sequencing to help us understand the microbial community found within the microbiomes of hosts and vectors, and help us uncover mechanistic relationships between climate variability and pathogen transmission. Our understanding of, and responses to, such complex dynamics and their impacts can be enhanced through effective, multi-sectoral One Health engagement coupled with applications of both traditional and novel technologies. Concerted efforts are needed to further harness and leverage technology that can identify and track these impacts of climate changes in order to mitigate and adapt to their effects.

5.
Trop Med Infect Dis ; 4(2)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091687

RESUMO

With the rapid development and broad applications of next-generation sequencing platforms and bioinformatic analytical tools, genomics has become a popular area for biosurveillance and international scientific collaboration. Governments from countries including the United States (US), Canada, Germany, and the United Kingdom have leveraged these advancements to support international cooperative programs that aim to reduce biological threats and build scientific capacity worldwide. A recent conference panel addressed the impacts of the enhancement of genomic sequencing capabilities through three major US bioengagement programs on international scientific engagement and biosecurity risk reduction. The panel contrasted the risks and benefits of supporting the enhancement of genomic sequencing capabilities through international scientific engagement to achieve biological threat reduction and global health security. The lower costs and new bioinformatic tools available have led to the greater application of sequencing to biosurveillance. Strengthening sequencing capabilities globally for the diagnosis and detection of infectious diseases through mutual collaborations has a high return on investment for increasing global health security. International collaborations based on genomics and shared sequence data can build and leverage scientific networks and improve the timeliness and accuracy of disease surveillance reporting needed to identify and mitigate infectious disease outbreaks and comply with international norms. Further efforts to promote scientific transparency within international collaboration will improve trust, reduce threats, and promote global health security.

6.
PLoS One ; 13(11): e0207062, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30403741

RESUMO

Coniothyrium glycines, the causal agent of soybean red leaf blotch, is a USDA APHIS-listed Plant Pathogen Select Agent and potential threat to US agriculture. Sequencing of the C. glycines mt genome revealed a circular 98,533-bp molecule with a mean GC content of 29.01%. It contains twelve of the mitochondrial genes typically involved in oxidative phosphorylation (atp6, cob, cox1-3, nad1-6, and nad4L), one for a ribosomal protein (rps3), four for hypothetical proteins, one for each of the small and large subunit ribosomal RNAs (rns and rnl) and a set of 30 tRNAs. Genes were encoded on both DNA strands with cox1 and cox2 occurring as adjacent genes having no intergenic spacers. Likewise, nad2 and nad3 are adjacent with no intergenic spacers and nad5 is immediately followed by nad4L with an overlap of one base. Thirty-two introns, comprising 54.1% of the total mt genome, were identified within eight protein-coding genes and the rnl. Eighteen of the introns contained putative intronic ORFs with either LAGLIDADG or GIY-YIG homing endonuclease motifs, and an additional eleven introns showed evidence of truncated or degenerate endonuclease motifs. One intron possessed a degenerate N-acetyl-transferase domain. C. glycines shares some conservation of gene order with other members of the Pleosporales, most notably nad6-rnl-atp6 and associated conserved tRNA clusters. Phylogenetic analysis of the twelve shared protein coding genes agrees with commonly accepted fungal taxonomy. C. glycines represents the second largest mt genome from a member of the Pleosporales sequenced to date. This research provides the first genomic information on C. glycines, which may provide targets for rapid diagnostic assays and population studies.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Endonucleases/metabolismo , Genoma Mitocondrial/genética , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Códon/genética , Endonucleases/genética , Genômica , Íntrons/genética , RNA de Transferência/genética
7.
J Econ Entomol ; 110(4): 1821-1830, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28498951

RESUMO

The whitefly species Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood) are worldwide agricultural pests and virus vectors. Bemisia tabaci, in particular, is often transported internationally via trade routes leading to potential introductions of exotic whiteflies or plant viruses. Quick identification of agriculturally important whiteflies can facilitate interventions that prevent these cross-border introductions. Polymerase chain reaction (PCR) primers were designed to amplify the mitochondrial cytochrome oxidase I gene (mtCOI) sequence of members of the B. tabaci complex, MEAM1, MED, and NW, and T. vaporariorum. Primers incorporated an A/T-rich overhang sequence at the 5' terminus (5' flap) to test for increased primer sensitivity and assay efficiency. Single-target and multiplex endpoint PCR assays with the eight primer sets were performed using genomic DNA template extracted from individual adult whiteflies. Resultant PCR amplicons obtained for B. tabaci MEAM1, MED, and NW, and T. vaporariorum primers with the 5' flap were 559-, 717-, 353-, and 258-bp, respectively, and without the 5' flap were 550-, 712-, 329-, and 252-bp in length, respectively. In single-target and multiplex reactions, specific amplification was achieved using both the unmodified and 5' flap-modified primers. Sequencing and phylogenetic analysis confirmed primer-target amplification specificity. Using these primer sets in single-target or multiplex PCR allows for quick discrimination and specific identification of B. tabaci complex members and T. vaporariorum, and the addition of 5'A/T-rich overhang sequences increases the sensitivity and amplification of some primer sets.


Assuntos
Primers do DNA/genética , Hemípteros/genética , Proteínas de Insetos/genética , Animais , Primers do DNA/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Hemípteros/classificação , Proteínas Mitocondriais/genética , Reação em Cadeia da Polimerase Multiplex , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Termodinâmica
8.
Trop Med Infect Dis ; 2(4)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30270914

RESUMO

Scientific communication, collaboration and progress are enhanced through the exchange of data, materials and ideas. Recent advances in technology, commercial proprietary discovery and current local and global events (e.g., emerging human, animal and plant disease outbreaks) have increased the demand, and shortened optimal timelines for material and data exchange, both domestically and internationally. Specific circumstances in each case, such as the type of material being transferred (i.e., select agent, disease-causing agent and assessed biosafety risk level) and current events, dictate the level of agreements and requirements. Recent lessons learned from emerging disease issues and emergencies have demonstrated that human engagement and increased science diplomacy are needed to reinforce and sustain biosafety and biosecurity practices and processes, for better scientific transparency. A reasonable and accepted framework of guidance for open sharing of data and materials is needed that can be applied on multiple cooperative levels, including global and national. Although numerous agreement variations already exist for the exchange of materials and data, regulations to guide the development of both the language and implementation of such agreements are limited. Without such regulations, scientific exchange is often restricted, limiting opportunities for international capacity building, collaboration and cooperation. In this article, we present and discuss several international case histories that illustrate the complex nature of scientific exchange. Recommendations are made for a dual bottom-up and top-down approach that includes all stakeholders from beginning negotiation stages to emphasize trust and cooperation. The broader aim of this approach is to increase international scientific transparency and trust in a safe and open manner, supporting increased global one health security.

9.
J Food Prot ; 79(4): 574-81, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27052861

RESUMO

The Centers for Disease Control and Prevention recently emphasized the need for enhanced technologies to use in investigations of outbreaks of foodborne illnesses. To address this need, e-probe diagnostic nucleic acid analysis (EDNA) was adapted and validated as a tool for the rapid, effective identification and characterization of multiple pathogens in a food matrix. In EDNA, unassembled next generation sequencing data sets from food sample metagenomes are queried using pathogen-specific sequences known as electronic probes (e-probes). In this study, the query of mock sequence databases demonstrated the potential of EDNA for the detection of foodborne pathogens. The method was then validated using next generation sequencing data sets created by sequencing the metagenome of alfalfa sprouts inoculated with Escherichia coli O157:H7. Nonspecific hits in the negative control sample indicated the need for additional filtration of the e-probes to enhance specificity. There was no significant difference in the ability of an e-probe to detect the target pathogen based upon the length of the probe set oligonucleotides. The results from the queries of the sample database using E. coli e-probe sets were significantly different from those obtained using random decoy probe sets and exhibited 100% precision. The results support the use of EDNA as a rapid response methodology in foodborne outbreaks and investigations for establishing comprehensive microbial profiles of complex food samples.


Assuntos
DNA Bacteriano/genética , Escherichia coli O157/genética , Doenças Transmitidas por Alimentos/microbiologia , Medicago sativa/microbiologia , Metagenômica/métodos , Verduras/microbiologia , Escherichia coli O157/classificação , Escherichia coli O157/isolamento & purificação , Contaminação de Alimentos/análise , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estados Unidos
10.
Investig Genet ; 5: 10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25132953

RESUMO

BACKGROUND: Crops in the USA are vulnerable to natural and criminal threats because of their widespread cultivation and lack of surveillance, and because of implementation of growing practices such as monoculture. To prepare for investigation and attribution of such events, forensic assays, including determination of molecular profiles, are being adapted for use with plant pathogens. The use of multi-locus variable number tandem repeat (VNTR) analysis (MLVA) and multi-locus sequence typing (MLST) in investigations involving plant pathogens may be problematic because the long lag periods between pathogen introduction and discovery of associated disease may provide enough time for evolution to occur in the regions of the genome employed in each assay. Thus, more information on the stability of the loci employed in these methods is needed. RESULTS: The MLVA fingerprints and MLST profiles were consistent throughout the experiment, indicating that, using a specific set of primers and conditions, MLVA and MLST typing systems reliably identify P.s. tomato DC3000. This information is essential to forensic investigators in interpreting comparisons between MLVA and MLST typing profiles observed in P.s. tomato isolates. CONCLUSIONS: Our results indicate that MLVA and MLST typing systems, utilizing the specified primers and conditions, could be employed successfully in forensics investigations involving P.s. tomato. Similar experiments should be conducted in the field and with other high-consequence plant pathogens to ensure that the assays are reliable for pathogens infecting plants in their natural environment and for organisms that may display faster rates of mutation.

11.
PLoS One ; 9(8): e105248, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147942

RESUMO

Outbreaks of foodborne illness attributed to the consumption of Salmonella-tainted cantaloupe have occurred repeatedly, but understanding of the ecology of Salmonella on cantaloupe fruit surfaces is limited. We investigated the interactions between Salmonella enterica Poona, the plant pathogenic bacterium Erwinia tracheiphila, and cantaloupe fruit. Fruit surfaces were inoculated at the natural cracking stage by spreading S. enterica and E. tracheiphila, 20 µl at 107 cfu/ml, independently or together, over a 2×2 cm rind area containing a crack. Microbial and microscopic analyses were performed at 0, 9 and 24 days post inoculation (DPI). Even at 24 DPI (fruit maturity) S. enterica was detected on 14% and 40% of the fruit inoculated with S. enterica alone and the two-pathogen mixture, respectively. However, the population of S. enterica declined gradually after initial inoculation. E. tracheiphila, inoculated alone or together with Salmonella, caused watersoaked lesions on cantaloupe fruit; but we could not conclude in this study that S. enterica survival on the fruit surface was enhanced by the presence of those lesions. Of fruit inoculated with E. tracheiphila alone and sampled at 24 DPI, 61% had watersoaked lesions on the surface. In nearly half of those symptomatic fruits the watersoaking extended into the sub-rind mesocarp, and E. tracheiphila was recovered from that tissue in 50% of the symptomatic fruit. In this work, E. tracheiphila internalized through natural cracks on developing fruits. S. enterica was never detected in the fruit interior (ca. 2-3 mm below rind surface) under the limited conditions of our experiments, but the possibility that it, or other human pathogens that contaminate fresh produce, might also do so should be investigated under a wider range of conditions and produce types.


Assuntos
Cucumis melo/microbiologia , Cucurbitaceae/microbiologia , Erwinia/isolamento & purificação , Microbiologia de Alimentos , Frutas/microbiologia , Salmonella/isolamento & purificação , Contagem de Colônia Microbiana , Erwinia/genética , Doenças Transmitidas por Alimentos/microbiologia , Salmonella/genética
12.
Investig Genet ; 5: 9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101166

RESUMO

High throughput sequencing (HTS) generates large amounts of high quality sequence data for microbial genomics. The value of HTS for microbial forensics is the speed at which evidence can be collected and the power to characterize microbial-related evidence to solve biocrimes and bioterrorist events. As HTS technologies continue to improve, they provide increasingly powerful sets of tools to support the entire field of microbial forensics. Accurate, credible results allow analysis and interpretation, significantly influencing the course and/or focus of an investigation, and can impact the response of the government to an attack having individual, political, economic or military consequences. Interpretation of the results of microbial forensic analyses relies on understanding the performance and limitations of HTS methods, including analytical processes, assays and data interpretation. The utility of HTS must be defined carefully within established operating conditions and tolerances. Validation is essential in the development and implementation of microbial forensics methods used for formulating investigative leads attribution. HTS strategies vary, requiring guiding principles for HTS system validation. Three initial aspects of HTS, irrespective of chemistry, instrumentation or software are: 1) sample preparation, 2) sequencing, and 3) data analysis. Criteria that should be considered for HTS validation for microbial forensics are presented here. Validation should be defined in terms of specific application and the criteria described here comprise a foundation for investigators to establish, validate and implement HTS as a tool in microbial forensics, enhancing public safety and national security.

13.
Phytopathology ; : PHYTO09120236IAtest, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27454682

RESUMO

Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define cross-over issues that pertain also to HPOP research, and can suggest logical strategies for minimizing the risk of microbial contamination. Continued interactions and communication among these two disciplinary communities is essential and can be achieved by the creation of an interdisciplinary research coordination network. We hope that this article, an introduction to the multidisciplinary HPOP arena, will be useful to researchers in many related fields.

14.
Phytopathology ; : PHYTO09120236RVWtest, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27454683

RESUMO

Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define cross-over issues that pertain also to HPOP research, and can suggest logical strategies for minimizing the risk of microbial contamination. Continued interactions and communication among these two disciplinary communities is essential and can be achieved by the creation of an interdisciplinary research coordination network. We hope that this article, an introduction to the multidisciplinary HPOP arena, will be useful to researchers in many related fields.

15.
J Forensic Sci ; 59(2): 463-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24261870

RESUMO

The U.S. agricultural sector is vulnerable to intentionally introduced microbial threats because of its wide and open distribution and economic importance. To investigate such events, forensically valid assays for plant pathogen detection are needed. In this work, real-time PCR assays were developed for three model plant pathogens: Pseudomonas syringae pathovar tomato, Xylella fastidiosa, and Wheat streak mosaic virus. Validation included determination of the linearity and range, limit of detection, sensitivity, specificity, and exclusivity of each assay. Additionally, positive control plasmids, distinguishable from native signature by restriction enzyme digestion, were developed to support forensic application of the assays. Each assay displayed linear amplification of target nucleic acid, detected 100 fg or less of target nucleic acid, and was specific to its target pathogen. Results obtained with these model pathogens provide the framework for development and validation of similar assays for other plant pathogens of high consequence.


Assuntos
Potyvirus/genética , Pseudomonas syringae/genética , Xylella/genética , Bioterrorismo , Citrus/microbiologia , DNA Bacteriano/isolamento & purificação , DNA Viral/isolamento & purificação , Limite de Detecção , Solanum lycopersicum/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Triticum/virologia , Vitis/microbiologia
16.
PLoS One ; 8(11): e81647, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312333

RESUMO

A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets.


Assuntos
Citrus/microbiologia , Genética Forense/métodos , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Taq Polimerase/metabolismo , Xylella/genética , Xylella/isolamento & purificação , Primers do DNA/genética , Genoma Bacteriano/genética , Genômica , Reprodutibilidade dos Testes , Xylella/fisiologia
17.
J Microbiol Methods ; 94(3): 356-66, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23867249

RESUMO

Plant biosecurity requires rapid identification of pathogenic organisms. While there are many pathogen-specific diagnostic assays, the ability to test for large numbers of pathogens simultaneously is lacking. Next generation sequencing (NGS) allows one to detect all organisms within a given sample, but has computational limitations during assembly and similarity searching of sequence data which extend the time needed to make a diagnostic decision. To minimize the amount of bioinformatic processing time needed, unique pathogen-specific sequences (termed e-probes) were designed to be used in searches of unassembled, non-quality checked, sequence data. E-probes have been designed and tested for several selected phytopathogens, including an RNA virus, a DNA virus, bacteria, fungi, and an oomycete, illustrating the ability to detect several diverse plant pathogens. E-probes of 80 or more nucleotides in length provided satisfactory levels of precision (75%). The number of e-probes designed for each pathogen varied with the genome size of the pathogen. To give confidence to diagnostic calls, a statistical method of determining the presence of a given pathogen was developed, in which target e-probe signals (detection signal) are compared to signals generated by a decoy set of e-probes (background signal). The E-probe Diagnostic Nucleic acid Analysis (EDNA) process provides the framework for a new sequence-based detection system that eliminates the need for assembly of NGS data.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas Microbiológicas/métodos , Análise de Sequência de DNA/métodos , Bases de Dados Genéticas , Sondas de Ácido Nucleico , Doenças das Plantas/microbiologia
18.
J Food Prot ; 76(4): 668-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23575131

RESUMO

Foodborne illnesses caused by Salmonella enterica and Escherichia coli O157:H7 are worldwide health concerns. Rapid, sensitive, and robust detection of these pathogens in foods and in clinical and environmental samples is essential for routine food quality testing, effective surveillance, and outbreak investigations. The aim of this study was to evaluate the effect on PCR sensitivity of adding a short, AT-rich overhanging nucleotide sequence (flap) to the 5' end of PCR primers specific for the detection of Salmonella and E. coli O157:H7. Primers targeting the invA gene of Salmonella and the rfbE gene of E. coli O157:H7 were synthesized with or without a 12-bp, AT-rich 5' flap (5'-AATAAATCATAA-3'). Singleplex PCR, multiplex PCR, and real-time PCR sensitivity assays were conducted using purified bacterial genomic DNA and crude cell lysates of bacterial cells. The effect of background flora on detection was evaluated by spiking tomato and jalapeno pepper surface washes with E. coli O157:H7 and Salmonella Saintpaul. When targeting individual pathogens, end-point PCR assays using flap-amended primers were more efficient than nonamended primers, with 20.4 and 23.5% increases in amplicon yield for Salmonella and E. coli O157:H7, respectively. In multiplex PCR assays, a 10- to 100-fold increase in detection sensitivity was observed when the primer flap sequence was incorporated. This improvement in both singleplex and multiplex PCR efficiency and sensitivity can lead to improved Salmonella and E. coli O157:H7 detection.


Assuntos
DNA Bacteriano/análise , Escherichia coli O157/isolamento & purificação , Contaminação de Alimentos/análise , Reação em Cadeia da Polimerase/métodos , Salmonella/isolamento & purificação , Contagem de Colônia Microbiana , Primers do DNA , Microbiologia de Alimentos , Humanos , Sensibilidade e Especificidade , Fatores de Tempo
19.
Phytopathology ; 103(4): 306-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23406434

RESUMO

Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define cross-over issues that pertain also to HPOP research, and can suggest logical strategies for minimizing the risk of microbial contamination. Continued interactions and communication among these two disciplinary communities is essential and can be achieved by the creation of an interdisciplinary research coordination network. We hope that this article, an introduction to the multidisciplinary HPOP arena, will be useful to researchers in many related fields.


Assuntos
Contaminação de Alimentos/prevenção & controle , Doenças das Plantas/microbiologia , Plantas/microbiologia , Animais , Resistência à Doença , Microbiologia de Alimentos , Interações Hospedeiro-Patógeno , Humanos , Doenças das Plantas/imunologia , Plantas/imunologia , Pesquisa
20.
Phytopathology ; 103(4): 373-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23425236

RESUMO

Filth flies are known mechanical vectors of pathogenic bacteria in hospital and restaurant settings, but their role as vectors for disseminating microbes to plants has not been demonstrated. Escherichia coli O157:H7 deposition by flies onto spinach was studied using molecular, microbiological, and microscopy techniques. Relative quantitative polymerase chain reaction studies showed that bacteria acquired by flies from contaminated cattle manure and deposited in regurgitation spots on leaves survived and multiplied. Scanning electron microscopy of the regurgitation spots of flies exposed to manure inoculated with E. coli suggested the multiplication of bacteria-like organisms within the spots. This finding implies that the bacteria were active and is consistent with a hypothesis that regurgitation spots serve as a nutrition source allowing E. coli O157:H7 to survive on the spinach phylloplane. E. coli O157:H7 persisted on fly body surfaces up to 13 days after exposure to acquisition sources, suggesting that fly cuticular surfaces are conducive to the growth of this pathogen. These results are consistent with the hypothesis of bioenhanced transmission of human pathogens by house flies and suggest that filth flies may affect the microbial safety of fresh produce.


Assuntos
Escherichia coli O157/isolamento & purificação , Moscas Domésticas/microbiologia , Insetos Vetores/microbiologia , Spinacia oleracea/microbiologia , Animais , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Escherichia coli O157/genética , Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos , Microbiologia de Alimentos , Moscas Domésticas/citologia , Moscas Domésticas/fisiologia , Humanos , Insetos Vetores/citologia , Insetos Vetores/fisiologia , Microscopia Eletrônica de Varredura , Movimento , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase , Spinacia oleracea/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...